Bryan W. Forward, ${ }^{1}$ M.S.; Mark W. Eastman, ${ }^{2}$ M.S.; Thomas B. Nyambo, ${ }^{3}$ M.D.; and Ruth E. Ballard, ${ }^{1}$ Ph.D.

AMPF/STR ${ }^{\circledR}$ Identifiler ${ }^{\text {TM }}$ STR Allele Frequencies in Tanzania, Africa

Abstract

POPULATION: Identifiler-Employees and students of Muhimibili University College of Health Sciences in Dar es Salaam representing 19 widely distributed administrative districts and 42 tribes within the country.

KEYWORDS: forensic science, DNA identification testing, short tandem repeats, Identifiler, paternity testing, D3S1358, vWA, FGA, D8S1179, D21S11, D18S51, D5S818, D13S317, D7S820, D16S539, THO1, TPOX, CSF1PO, D2S1338, D19S433, Tanzania

Allele frequencies of the fifteen AMPLFISTR ${ }^{\circledR}$ Identifiler $^{\text {TM }}$ STR loci were determined for the population of Tanzania, East Africa. Two hundred and seventy-two saliva samples were gathered from unrelated healthy student or employee volunteers at Muhimbili University College of Health Sciences in Dar es Salaam, Tanzania during the summer of 2003. The tribal affiliation of each donor was recorded to ensure that representative sampling was achieved, and a total of 19 widely distributed administrative regions of the country and 42 tribes were represented in the final genotypic data. DNA was extracted using the QIAamp spin column protocol for saliva (Qiagen, Valencia, CA) and quantitated using the Quantiblot ${ }^{\circledR}$ colorimetric system (Applied Biosystems, Foster City, CA). Approximately 1 ng of DNA was amplified from each sample using the Identifiler ${ }^{\text {TM }}$ system (Applied Biosystems) and subjected to capillary electrophoresis on a 310 Genetic Analyzer (Applied Biosystems). Raw data was collected, sorted, and sized using ABI Gene Collection ${ }^{\circledR}$ and Genescan ${ }^{\circledR}$ software (Applied Biosystems), and alleles were assigned using ABI Genotyper ${ }^{\circledR}$ software (Applied Biosystems).

Allele frequencies were calculated using GENEPOP ${ }^{\odot}$ online software, v. 3.4 (1). Table 1 lists the frequencies of the alleles at each locus, indicates the total number of samples used to generate the table, and provides the database validation statistics.

A Fisher Exact Test was used to test adherence to Hardy Weinberg Equilibrium (HWE) at all loci (2,000 shufflings, GENEPOP ${ }^{\text {© }}$ online software, v 3.4). Twelve of the 15 loci yielded p-values of >0.05, and thus failed to reject the hypothesis that the population is in HWE at these loci. The remaining three loci, D8S1178, D3S1358, and D2S1338, yielded p-values <0.05; however, a truncated product test for adherence of all loci yielded a p-value of 0.0654 , thus validating the database for general use (2).

The complete dataset is available upon request through electronic mail from the corresponding author at ballardr@csus.edu and on
the corresponding author's academic webpage at http://www.csus. edu/indiv/b/ballardr/index.htm.

Acknowledgments

This study was supported by the California State University, Sacramento Research and Creative Activities Program (03-147-BG-SF2AT6) and by a National Science Foundation CCLI Adaptation and Implementation award (0088863). Special thanks to Lauren Baughman and Lydia Carrona-Craig for their technical assistance in extracting DNA samples at MUCHS, and to Mary Hansen, Supervising Criminalist for the Sacramento County District Attorney's Laboratory of Forensic Sciences, for her advice and assistance in this study.

Additional thanks to Louisa Jospehine Mwanjesa for her help in identifying the tribal associations of MUCHS donors.

Capillary gel electrophoresis was performed on a 310 Genetic Analyzer housed in the CIMERA facility at California State University, Sacramento.

References

1. Chang T, Hendrie R, Abercrombie-Higgins J, Maddocks R, Morgan E. Genepop, Version 3.4, 2004. Free program distributed by authors over the internet from http://genepop.curtin.edu.au/. Accessed 22 Jan. 2006.
2. Zaykin D, Zhivotovsky L, Weir BS. Exact tests for association between alleles at arbitrary numbers of loci. Genetica 1995;96:169-78.

Additional information and reprint requests:
Ruth E. Ballard, Ph.D
Associate Professor of Biological Sciences
California State University, Sacramento
6000 J. Street
Sacramento, CA 95819-6077
E-mail: ballardr@csus.edu

[^0]TABLE 1—Allele frequencies for ABI Identifiler ${ }^{\text {TM }}$ loci in the population of Tanzania, Africa

Allele	$\begin{gathered} \text { D8S1179 } \\ n=225 \end{gathered}$	$\begin{aligned} & \mathrm{D} 21 \mathrm{~S} 11 \\ & n=224 \end{aligned}$	$\begin{aligned} & \text { D7S820 } \\ & n=225 \end{aligned}$	$\begin{aligned} & \text { CSF1P0 } \\ & n=172 \end{aligned}$	$\begin{gathered} \text { D3S1358 } \\ n=225 \end{gathered}$	$\begin{gathered} \text { THO1 } \\ n=172 \end{gathered}$	$\begin{gathered} \text { D13S317 } \\ n=225 \end{gathered}$	$\begin{gathered} \text { D16S539 } \\ n=172 \end{gathered}$	$\begin{gathered} \text { D2S } 1338 \\ n=172 \end{gathered}$	$\begin{gathered} \text { D19S433 } \\ n=172 \end{gathered}$	$\begin{gathered} \text { vWA } \\ n=225 \end{gathered}$	$\begin{gathered} \text { TPOX } \\ n=169 \end{gathered}$	$\begin{aligned} & \text { D18S51 } \\ & n=225 \end{aligned}$	$\begin{aligned} & \text { D5S818 } \\ & n=225 \end{aligned}$	$\begin{gathered} \text { FGA } \\ n=225 \end{gathered}$
6.00			0.0044			0.1424						0.0976		0.0022	
7			0.0022	0.0436		0.3663						0.0148		0.0022	
8			0.1956	0.0552		0.2326	0.0067	0.0291				0.2367		0.0844	
9			0.1156	0.0669		0.2006	0.0133	0.2122		0.0087		0.284		0.0378	
9.3						0.0581									
10	0.0044		0.3911	0.2878			0.0267	0.1599		0.0116		0.0858	0.0067	0.0756	
10.2													0.0067		
11	0.0489		0.1956	0.1919			0.3067	0.3401		0.0727	0.0044	0.2574	0.0156	0.2022	
12	0.1267		0.0822	0.2791	0.0044		0.4044	0.1366		0.1076		0.0178	0.0333	0.38	
12.2										0.0436					
13	0.2067		0.0111	0.061	0.0067		0.1956	0.1163		0.2645	0.0089	0.0059	0.0333	0.2067	
13.1			0.0022												
13.2										0.0814			0.0067		
14	0.2978			0.0087	0.0644		0.0467	0.0058		0.2238	0.06		0.0622	0.0067	
14.2										0.0669			0.0022		
15	0.2067			0.0058	0.2333					0.0523	0.2422		0.1289	0.0022	
15.2										0.0378			0.0022		
16	0.0978				0.4267				0.061	0.0058	0.2622		0.1956		
16.1															0.0022
16.2										0.0203			0.0022		
17	0.0111				0.1956				0.0756		0.14		0.1867		0.0022
17.1															0.0022
17.2										0.0029			0.0022		
18					0.0622				0.0552		0.1733		0.1444		0.0067
18.2															0.0044
19					0.0067				0.1773		0.0778		0.0956		0.0556
19.2															0.02
20									0.0669		0.0244		0.04		0.0444
20.2															0.0022
21									0.186		0.0044		0.0267		0.0667
21.2															0.0022
22									0.1512		0.0022		0.0067		0.1778
23									0.0814				0.0022		0.1556
24									0.0465						0.2111
24.3		0.0045													
25									0.061						0.1089
25.2															0.0022
25.3		0.0022													
26		0.0022							0.0233						0.0622
27		0.0804							0.0145						0.0333
28		0.2567													0.0044
29		0.192													0.0044
29.1															0.0022
30		0.1272													0.0022
30.2		0.0134													0.0067
31		0.1161													
31.1		0.0022													0.0044
31.2		0.0536													0.0067
32		0.0201													
32.2		0.0402													
33		0.0067													
33.1		0.0022													

TABLE 1-continued

Allele	$\begin{gathered} \text { D8S1179 } \\ n=225 \end{gathered}$	$\begin{aligned} & \mathrm{D} 21 \mathrm{~S} 11 \\ & n=224 \end{aligned}$	$\begin{aligned} & \text { D7S820 } \\ & n=225 \end{aligned}$	$\begin{aligned} & \text { CSF1P0 } \\ & n=172 \end{aligned}$	$\begin{gathered} \text { D3S1358 } \\ n=225 \end{gathered}$	$\begin{gathered} \text { THO1 } \\ n=172 \end{gathered}$	$\begin{gathered} \text { D13S317 } \\ n=225 \end{gathered}$	$\begin{gathered} \text { D16S539 } \\ n=172 \end{gathered}$	$\begin{gathered} \mathrm{D} 2 \mathrm{~S} 1338 \\ n=172 \end{gathered}$	$\begin{gathered} \text { D19S433 } \\ n=172 \end{gathered}$	$\begin{gathered} \text { vWA } \\ n=225 \end{gathered}$	$\begin{gathered} \text { TPOX } \\ n=169 \end{gathered}$	$\begin{aligned} & \text { D18S51 } \\ & n=225 \end{aligned}$	$\begin{aligned} & \text { D5S818 } \\ & n=225 \end{aligned}$	$\begin{gathered} \text { FGA } \\ n=225 \end{gathered}$
33.2		0.0268													
34		0.0089													
34.2		0.0022													
35		0.0379													
36		0.0022													
39		0.0022													
43.2															
44.2															0.0022
45.2															0.0067
P	0.0223	0.5288	0.8680	0.6626	0.0358	0.0824	0.6276	0.0656	0.0195	0.9407	0.2209	0.6227	0.4634	0.8337	0.7538
H (obs)	0.8400	0.8438	0.7777	0.8023	0.6800	0.8198	0.7378	0.7674	0.8895	0.8837	0.8311	0.8107	0.8844	0.7244	0.8667
H(exp)	0.7977	0.8537	0.7502	0.7892	0.7171	0.7478	0.7010	0.7807	0.8809	0.8453	0.8126	0.7796	0.8714	0.7577	0.8726
PD	0.9063	0.9510	0.8487	0.8968	0.8023	0.8498	0.7842	0.8872	0.9688	0.9445	0.9298	0.8887	0.9634	0.8581	0.9638
PE	0.5544	0.6511	0.4837	0.5411	0.4394	0.4804	0.4192	0.5280	0.7042	0.6355	0.5786	0.5264	0.6852	0.4942	0.6875
PIC	0.7687	0.8385	0.7144	0.7591	0.6747	0.7072	0.6487	0.7492	0.8695	0.829	0.787	0.7452	0.8584	0.7234	0.8601
MAF	0.0111	0.0112	0.0111	0.0145	0.0111	0.0145	0.0111	0.0145	0.0145	0.0145	0.0111	0.0148	0.0111	0.0111	0.0111

[^0]: ${ }^{1}$ Department of Biological Sciences, California State University, Sacramento, CA.
 ${ }^{2}$ Sacramento County Laboratory of Forensic Services, Sacramento, CA.
 ${ }^{3}$ Department of Biochemistry, Muhimbili University College of Health Sciences, Dar es Salaam, Tanzania.

